VISUAL AND COMPUTER-BASED MODELS IN INTEGRATED MATHEMATICS EDUCATION

Authors

DOI:

https://doi.org/10.54662/veresen.4.2025.04

Keywords:

dynamic geometry systems, integration, modeling, computational thinking, Desmos, GeoGebra, Python

Abstract

The article substantiates the pedagogical value of visual and computer-based modelling in secondary mathematics (Grades 7–11) and proposes an integration framework that combines GeoGebra, Desmos, and Python (turtle, matplotlib) to cultivate spatial and computational thinking. Conceptual-methodological reasoning and the authors’ synthesis indicate that dynamic geometry systems (DGS) enable students to reason with invariants, parameters, and transformations through direct manipulation, while Python translates visual insight into programmatic verification via a series of experiments, automated constructions, and data-driven checks. We formulate a didactic workflow-visualisation → analysis → programmatic verification → generalization – and show how it can be enacted within a two-period lesson through small-group roles (constructor, analyst, programmer, presenter) that support agency, collaboration, and reflective discourse. The paper presents two summary tables that map integration opportunities across major curriculum strands (geometry, functions, analytic geometry, transformations, statistics/probability, combinatorics, and STEM projects) and align tools to their pedagogical affordances. A companion table offers lesson fragments in which learners independently discover patterns (e.g., relations among triangle elements, parameter effects on a quadratic, linear dependence, law of large numbers, rigid motions, and fractals) and articulate conclusions grounded in both dynamic visuals and code outputs. Practical guidance is provided on low-barrier task design (short, readable code; prepared sliders and templates), process-oriented assessment (quality of hypotheses, parameter variation, algorithmic correctness, interpretation of error, teamwork), and differentiation («common core + extensions» for mixed-ability classes). We also outline organisational conditions and risk-mitigation strategies (offline GeoGebra, portable Python, cached applets, print-ready snapshots) to ensure continuity in constrained settings. The contribution is methodological rather than empirical; nonetheless, it delineates mechanisms by which modelling can impact learning: visual variability fosters spatial intuition; algorithmic iteration stabilises conjectures; and immediate feedback sustains motivation by shifting learners from observers to creators. The article concludes with prospects for future workquasi-experimental evaluation of impacts on spatial/computational thinking, tighter Python–DGS bridges, and refined task taxonomies positioning integrated modelling as a coherent pathway from intuition to formal mathematical explanation in contemporary classrooms. The perspectives for further research are related to the empirical evaluation of the impact of modelling on students’ spatial and computational thinking, as well as the exploration of task differentiation for different levels of learner preparedness.

References

He, A., Yuan, W., & Kiliçman, A. (2024). A meta-analysis on the effectiveness of dynamic mathematics software on K-12 students’ mathematics learning. International Journal of Mathematical Education in Science and Technology, 56 (9), 1832–1855. DOI: https://doi.org/10.1080/0020739X.2024.2375257 (eng).

Hrybiuk, O. O., & Yunchyk, V. L. (2019). Systema Geogebra v protsesi proektno-doslidnytskoi diialnosti na urokakh matematyky [GeoGebra system in project-research activity in math lessons]. Instytut tsyfrovizatsii osvity NAPN Ukrainy. Retrieved from https://lib.iitta.gov.ua/id/eprint/704864/1/Kirovograd_Hrybiuk_Yunchyk_tezu.pdf (ukr).

Nite, W. A., Lawrence, S. B., & Chakravorty, D. (2025). Teaching Python to secondary students: A backward design process. Paper presented at the 2025 ASEE Annual Conference & Exposition, Montréal, QC. ASEE. Retrieved from: https://peer.asee.org/46734 (eng).

Ovsiienko, Yu. I., Antonets, A. V., & Kanivets, I. M. (2025). Vykorystannia matematychnykh metodiv v ekonomitsi u poiednanni z prohramnym zabezpechenniam GeoGebra [Use of mathematical methods in economics in combination with GeoGebra software]. Graal nauky, 52, 200–208. DOI: https://doi.org/10.36074/grail-of-science.23.05.2025.024 (ukr).

Pikalova, V. V. (2020). Geogebra yak instrument uprovadzhennia STEM oriientovanykh doslidzhen u praktyku pidhotovky maibutnoho vchytelia matematyky [GeoGebra as a tool for implementing STEM-oriented research in teacher training]. Naukovyi chasopys Ukrainskoho derzhavnoho universytetu imeni Mykhaila Drahomanova. Seriia 2. Kompiuterno-oriientovani systemy navchannia, 22 (29), 133–138. DOI: https://doi.org/10.31392/NPU-nc.series2.2020.22(29).18 (ukr).

Pohromska, H. S., & Makhrovska, N. A. (2025). Synerhiia prohramuvannia ta pryrodnycho-matematychnykh dystsyplin u konteksti STEM-osvity [Synergy of programming and natural-mathematical subjects in the context of STEM education]. Veresen, 3(106), 46–59. DOI: https://doi.org/10.54662/veresen.3.2025.04 (ukr).

Pohromska, H. S. (2021). Prohrama kompetentnisno ta diialnisno oriientovanoho variatyvnoho modulia «Tsikava matematyka z Desmos» [Program of the competence- and activity-oriented module «Interesting Mathematics with Desmos»]. Retrieved from https://drive.google.com/file/d/1mo69Si3tiESEQmdgUcbRreYHmQMB0GWz/view (ukr).

Polishchuk, T., Ishchenko, H., & Voznosymenko, D. (2020). Pidhotovka maibutnikh uchyteliv matematyky u protsesi vyvchennia matematychnykh dystsyplin z vykorystanniam paketu Geogebra [Training of future math teachers using GeoGebra]. Problemy pidhotovky suchasnoho vchytelia, 21, 111–118. DOI: https://doi.org/10.31499/2307-4914.21.2020.205462 (ukr).

Shabanova, L. M. (2022). Vykorystannia web-servisu «Geogebra» pid chas vyvchennia kursu heometrii 7 klasu [Using the GeoGebra web service in studying 7th-grade geometry]. Naukovi zapysky molodykh uchenykh, 12. Retrieved from https://phm.cuspu.edu.ua/ojs/index.php/SNYS/article/view/2075 (ukr).

Tiutiun, L. (2020). Doslidzhennia inversii ta yii vlastyvostei za dopomohoiu prohramy GeoGebra [Research of inversion and its properties using GeoGebra software]. Aktualni problemy matematyky, fizyky i tekhnolohii, 17, 106–112. Vinnytsia: TOV «Merkuri-Podillia» (ukr).

Yermakova-Cherchenko, N. O. (2022). Vykorystannia elektronnoho zasobu Geogebra pry rozviazuvanni zadach z fizyky [Using GeoGebra software in solving physics problems]. Information Technologies in Education, 1(50), 7–18. DOI: https://doi.org/10.14308/ite000753 (ukr).

Zulina, D. (2020). Perevahy vykorystannia prohramnoho zasobu GeoGebra na urokakh stereometrii [Advantages of using GeoGebra software in stereometry lessons]. Aktualni problemy matematyky, fizyky i tekhnolohii, 17, 138–141. Vinnytsia: TOV «Merkuri-Podillia» (ukr).

Published

2025-12-26

Issue

Section

Статті